User Feedback Mechanism Documentation
This is detailed documentation of the user feedback software incorporated into Greenstone under the “Send Feedback” button. It covers the design rationale and the artifact and is intended for those wishing to extend or modify the software. It is a companion document to the “Greenstone Developers’ Guide”. If you want to know the purpose of the software, you should read the papers listed as “further reading” at the end of this report.
1. Overview

The feedback software has four main components: a log file of usability reports, a perl CGI component, a JavaScript component included in the macro files, and a hook into Greenstone’s C++ receptionist code to allow the button to be displayed. There are some smaller components, including the button images and the format statements that are added to collection config files to activate the feedback mechanism. The mechanism can be described by the diagram below:

[image: image14.wmf]
Figure 1: Interlocking components of usability reporting system.

The following is a breakdown by file location of changes to the original Greenstone (where /gsdl is considered the “home” directory):
Table 1: Location and description of changes/additions to Greenstone software
	Directory
	Files affected
	Change

	cgi-bin
	perl.cgi, readresults.cgi, trackreport.cgi

usabcgi.pm
	These files have been added to provide necessary report writing and display functionalities

	collect/<colname>/etc
	collect.cfg
	Has the line “format Usability <interface>” added to it, where at this time the choices for <interface> are textonly, stepwise, and multi.

	etc
	usability.txt
	This file is a log of the usability reports that people have filed. It is created when the first report is filed, and each new report is appended to the end.

	images
	cusabon.gif, cusabof.gif
	Images for “on” and “off” buttons:

 [image: image2.png]SEND FEEDBACK

 [image: image3.png]SEND FEEDBACK

	macros
	style.dm, base.dm, english.dm
	Style.dm merely includes a reference to the macro that contains the JavaScript. Base.dm includes the JavaScript that generates the pop-up window with the feedback form on it, and english.dm contains all the interface text. (In the future it is hoped that the user feedback interface will be translated with the rest of the interface).

	src/recpt
	pageaction.cpp, documentaction.cpp
	These are the two places where the set of navigation buttons at the top right of the interface (traditionally “home”, “help”, “preferences”) is defined. The code is altered to look for the format statement (in the collection config file) that will add the button, and implement this.

The rest of this document will be broken into four parts: a description of the usability.txt file format in section 2, a description of the available user interfaces for the feedback software (and how to create and use more) in section 3, a description of the JavaScript used to generate the form in section 4, and descriptions of each of the new CGI programs in section 5. Section 6 will outline bugs in the software, and suggest avenues for future development.
2. The usability.txt file

Below is an example of what you might expect to see in a usability report in the usability.txt file:

report-id := 3715345995161052978548&usabend;

language := en-US&usabend;

pixeldepth := 32&usabend;

sendtime := Thu May 15 2003 18:15:00 GMT+1200 (New Zealand Standard Time)&usabend;

select-one-h := stx&usabend;

text-q := &usabend;

resolution := 1024x768&usabend;

hidden-r := 1&usabend;

screencolour := undefined&usabend;

browser := Win32 ,Netscape, 5.0 (Windows; en-US), Mozilla, undefined&usabend;

opentime := Thu May 15 2003 18:14:34 GMT+1200 (New Zealand Standard Time)&usabend;

select-one-t := 1&usabend;

URL := http://nzdl2.cs.waikato.ac.nz/cgi-bin/dana/library?site=localhost&a=p&p=about&c=demo&ct=0&l=en&w=utf-8&usabend;

severity := Trivial&usabend;

hidden-hs := 1&usabend;

moredetails := This is an example report, produced for documentation purposes&usabend;

hidden-a := q&usabend;

probtype := Other&usabend;

collection := demo&usabend;

hidden-e := p-000-00---0demo—00-0-0-0prompt-10---4---Document---0-1l—1-en-50---20-about---001-001-1-0utfZz-8-0&usabend;

browser-read-by-server := Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.3) Gecko/20030312&usabend;

browser-ip-no := 130.217.244.208&usabend;

server-ip-no := 130.217.248.92&usabend;

time := Thu May 15 18:02:28 2003&usabend;

--

Figure 2: Usability log-file entry
There are three character sequences that are used as delimiters in this file format: the sequence “:=” separates information types from their values, the sequence “&usabend;” separates the entries in a report (this is because some entries, in particular the moredetails entry, may contain newlines), and the dashes at the end of the figure are used to separate one report from the next. Some entries in the file are generated by the JavaScript in base.dm, some are generated by the CGI perl.cgi, and some come from the usability pop-up itself. Table 2 describes each entry in the report shown in figure 2.
Table 2: breakdown of usability log-file entry

	Entry name
	Generated by
	Description

	report-id
	perl.cgi
	This is a unique identifier, made up of the IP address of the user’s machine, and the time the report was received in epoch seconds. This number is then encoded by a simple substitution to disguise the URL.

	language
	base.dm
	The language the browser identifies itself as using

	pixeldepth
	base.dm
	The number of bits per pixel used to display colour, as identified by the browser

	sendtime
	pop-up
	The time when the user clicked the send button as recorded by their browser. This is recorded by a header script in the usability pop-up form.

	select-one-h
	base.dm
	There is a select called one-h in the page that generated this usability report. (In this case a query page). This shows it’s value when the feedback button was pushed.

	text-q
	base.dm
	The generating page had a text input called q. This is its value when the feedback button was clicked.

	resolution
	base.dm
	Resolution of the screen as recorded by the browser.

	hidden-r
	base.dm
	Another input on the generating page.

	screencolor
	base.dm
	The color of the screen, as recorded by the browser.

	browser
	base.dm
	The browser as it identifies itself to JavaScript.

	opentime
	base.dm
	The time the usability dialog was opened by the user.

	select-one-t
	base.dm
	Another form element the generating page.

	URL
	base.dm
	The URL of the generating page; this contains all the cgi-arguments in encoded form.

	severity
	pop-up
	A select-box user input on the usability pop-up, indicating the severity of the problem

	hidden-hs
	base.dm
	Another form element in the generating page

	moredetails
	pop-up
	A text box for letting the user enter any further information they like on in the usability pop-up.

	hidden-q
	base.dm
	Another form element in the generating page

	probtype
	pop-up
	A select box on the pop-up provides the user with a choice of problem descriptions, this is their selection.

	collection
	base.dm
	The collection the user was viewing when the problem occurred.

	hidden-e
	base.dm
	This is an important form element on the original page, it stores the encoded version of all the CGI-arguments.

	browser-read-by-server
	perl.cgi
	The browser as identified by the server.

	browser-ip-no
	perl.cgi
	The browser’s IP number as read by the server.

	server-ip-no
	perl.cgi
	What the server thinks its own IP address is.

	time
	perl.cgi
	The time the report was received, according to the server.

All the ‘form element’ entries are dependent on either the interface of the page where the complaint was generated, or the interface on the pop-up, and so these entries are not uniform across the log – some pages and pop-ups may have different interfaces, thus leaving different entries in the file.

3. The interface for the usability feedback form

The usability feedback system is designed to support “drop-in” interfaces on the feedback form, so that collections may have different interfaces without a major effort from the collection owner. There are currently three interfaces available (see figure 3), though it is quite simple to add more. This section will first cover the available interfaces, and then describe how to create new ones.

3.1 The currently available interfaces

There are three interfaces currently available in the usability feedback system. Each of these interfaces was developed with a certain purpose and research background, each of these is outlined below.
The text-only interface (see Figure 3) was designed for requiring the minimum amount of input from users. When this interface is chosen, the user requires only two clicks to send a usability report — the click that opens the interface, and the click that confirms they wish to submit a report. The two-stage process is necessary because users must be advised of their right to privacy, and informed what sending a report means. For a collection owner to use this interface they add the line format usability textonly to their collection configuration file. This interface collects all the information available from the web browser, but is restricted by not allowing the user to add subjective information.

[image: image4.png]=

Greenstone Usability - Mozilla ad

Greenstone Usability

About- Privacy
Sending this eportis way of ndicating you have found the web page you were
viswing difieult o frustating

“The report vill contain only information sbout the Creenstons web page you were

viswing, and the technolagy you were usizg to view it (plus any optional
information you provide) Would you still e to send this report?

Figure 3: Two-click interface for the usability feedback system.

The second interface (see figure 4) available for the usability feedback system is a stepwise interface that leads the user through a series of questions in an attempt to get them to elaborate on their expectations of the system, and gain an understanding of why the system didn’t meet them. The system is based on what was seen in a number of traditional bug-reporting interfaces available on the web, where the developers try to gain an understanding of how the bug occurred from the user.
The third interface (see figure 5) is based on the Apple Safari bug reporting interface, and was designed after some discussion about the nature of usability problems. It was determined that while some usability problems will follow the sequence of normal bugs (unexpected program behaviour leading to confusion), some usability bugs don’t. Examples of usability bugs that are not sequential include not being able to find necessary functionality, and having buttons like “delete all my files” and “save this file” too close together. This third interface explicitly allows the user to enter as much or as little data as they would like/have time for. The select boxes are for the user to give an easy indication of the kinds of problems they are facing (including, for example, “page looks strange” and “strange behaviour”), and the degree to which it is problematic, from severe to trivial. This is the interface selected for testing on the NZDL main site. It was chosen because it was deemed to provide the best structure for users giving subjective information (a little or a lot), and still collects all the objective information available from the Greenstone software.

3.2 Creating a new interface

Because the interfaces are presented via a web browser, they must be created in code that can be displayed by a web browser. Steps for creating a new interface are as follows:
1. Design your interface, ensuring it can be displayed in a web browser.

2. Choose a name for your interface, and create a new macro in base.dm. The name of this macro should begin with the prefix “usab”, and should be what you want to call the interface (no spaces). Collection owners may then include your interface by adding the line “format Usability <yourinterfacename>” to their collection configuration files. If you do not use this convention for naming the macro, the receptionist will not be able to find the interface code
3. Add the interface to the base.dm file. Remember to make any text a macro and store that macro in english.dm (or the language file for the development language). This way as the interface is translated Greenstone can present it in different languages.

4. Remember that the interface is included in the pop-up with a single-quoted JavaScript string. Escape any single quotes or newlines with two backslashes (this is due to a peculiarity in the macro system).

5. Try your interface out.

[image: image5.png]Greenstone Usability - Mozilla =

=

Greenstone Usability

About- Privacy
What were you trying to do?

‘What did you expect to happer?

‘What actually happened?

Sending this eportis way of ndicating you have found the web page you were
viswing difieult o frustating

“The report vill contain only information sbout the Creenstons web page you were
viswing, and the technolagy you were usizg to view it (plus any optional
information you provide) Would you still e to send this report?

Figure 4: The stepwise usability interface
[image: image6.png]=

Greenstone Usability - Mozilla =

Greenstone Usability

About- Privacy

Sending this eportis a way of ndicating you have found the web page you were
viswing difieult o frustrating Yo do not have to fill aut he formn - any
information vl help.

Optionally:

More details:

What dind of problem s it? v
How bad is the problem? v
“The report vill contain only information sbout the Creenstons web page you were

viswing, and the technolagy you were usizg to view it (plus any optional
information you provide) Would you still e to send this report?

View reportdefails

Figure 5: The user interface used for testing.

4. JavaScript addition to base.dm

The JavaScript addition to base.dm is linked as a URL from the feedback button. It is stored in a macro called _usabilityscript_, and consists mostly of a single function, called usabilityfunction. There is one other function, called failnicely, which is specifically for when there is some problem with the execution of the script. Usabilityfunction has three main purposes:
1. To create and display the usability pop-up (with the right interface)

2. To extract any form elements from the generating page, and store them in the pop-up.
3. To record environment variables (for example the URL and the time), and store them in the pop-up.

The pop-up is created as a new window called checkusab, and sized accordingly. The code to go in the window is stored in a variable called winhtml, and written to the new window with a document.write call at the end of usabilityfunction. Regardless of the interface, the pop-up has a form on it called usabform, which submits its information to perl.cgi.
Form elements on the generating page are trapped by a loop that uses the getElementsByTagName function in JavaScript. Some browsers (notably NS 4.77 and below, and IE 4 and below) do not support this function; in those browsers this form information will not be collected. Each of the form elements is stored in a hidden form element on the pop-up. The name of each of these elements is made up of the name and type of the original element on the generating page, so, for example a text box named q on the generating page will become a hidden element named text-q on the pop-up. The value of each of these elements on the pop-up is their value on the generating page.
All environment variables available in JavaScript, and some other things (for example the time the pop-up was opened) are stored in the pop-up in hidden elements, much as the form elements from the generating page are. Each of these is given a hard-coded name, see Section 2 for descriptions.
5. The CGI programs
There are three CGI programs used in the Feedback software, perl.cgi, readresults.cgi, and trackreport.cgi; there is also a module called usabcgi.pm that provides functionality used by more than one of the CGI programs. Each of the programs accesses the usability.txt file; perl.cgi for writing and the other two for reading. The programs and the module are described individually in the following sections.
5.1 Usabcgi.pm

Usabcgi.pm provides functionality that is used by two ore more of the programs. Each of its functions is described in the table below:
Table 3: The functions in usabcgi.pm
	Function name
	Used by
	Purpose and description

	get_config_info
	perl.cgi, usabcgi.pm
	To get information from the site configuration file.
This function accepts a type of information to be found as an argument (chosen from the types in gsdlsite.cfg), and returns the value of it.

	printscript
	perl.cgi, trackreport.cgi, readresults.cgi
	To print the small script that is used to display the about and privacy information in a new window (of a certain size). This function takes no arguments and returns nothing.

	printbanner
	perl.cgi, trackreport.cgi, readresults.cgi
	Prints the HTML that encodes the usability banner (a title plus the Greenstone koru-thing on its side—see below).

[image: image7.png]BEIX]

Greenstone Usability Thank you! - Mozilla

Greenstone Usability -
Thank You

About- Privacy
Your comaments have been noted.

Thank you for helping us make Greenstore rore useble,

Track report Close Window

View report details

 It takes the title of the page as its sole argument (so for the above “Greenstone Usability – Thank you”).

	printaplinks
	perl.cgi, trackreport.cgi, readresults.cgi
	Prints HTML for the links to the About and Privacy pages (below).
[image: image8.png]BEIX]

Greenstone Usability Thank you! - Mozilla

Greenstone Usability -
Thank You

About- Privacy
Your comaments have been noted.

Thank you for helping us make Greenstore rore useble,

Track report Close Window

View report details

	printstyle
	perl.cgi, trackreport.cgi, readresults.cgi
	Checks that the browser being used is not Netscape 4.77 or less (as these do not cope well with in-page style definitions), and then prints CSS style definitions, for example defining text to be displayed in sans-serif font.

	checkidno
	trackreport.cgi, readresults.cgi
	Each of these programs accesses an individual report in the usability.txt file. Checkidno makes sure the report they’re trying to access is valid, and if not, ends the program.

The ID number is gained from the CGI environment variable QUERY_STRING.

	getusabreportdetails
	trackreport.cgi, readresults.cgi
	This function is to get a usability report from usability.txt, given a report ID number. If the ID number is not found, the program is ended.

The report ID number is gained from the CGI environment variable QUERY_STRING, and the report is returned in a perl hash for processing.

Where it is indicated that usabcgi.pm may end the program, it does so nicely with an error message for the user explaining the problem.
5.2 Perl.cgi

Perl.cgi is the most important of the three CGI programs. It has two main purposes:

1. Write the new usability report

2. Display a thank you and confirmation message to the user.

The information for the usability report is sent in a standard HTML post operation from the feedback pop-up when the user submits it. Perl.cgi formats this information, and some CGI environment information, and writes it to the end of the usability.txt file, in the format described in Section 2.
[image: image9.png]BEIX]

Greenstone Usability Thank you! - Mozilla

Greenstone Usability -
Thank You

About- Privacy
Your comaments have been noted.

Thank you for helping us make Greenstore rore useble,

Track report Close Window

View report details

Figure 6: The acknowledgement window
Perl.cgi also creates an acknowledgement window (see Figure 6). This window is important to let the user know that their report has been received (and valued), but also to show them exactly what information has been stored (using the “View Report Details” link).
5.2 Readresults.cgi
This program is used to show the user the information they submitted. It is linked from the acknowledgement window (and should probably be linked from the track report window, but isn’t at present). The report ID number is sent as a CGI argument. The report information is displayed in a web page like Figure 7, in a new window.
[image: image10.png]Greenstone Usability - Report Details - Mozilla [B[=%]

Greenstone Usability - Report Details

#bout- Privacy

Yo aonsatielly genrated eport ID mudber i: 371SH4S99SIG10S3TS6T43

The following technical information was automatically collected about your problem:

The URL of the page where you were having problems: hitp izl csralkato . xzlegbinidanalHoraryPsite=Iocalost s=p & p=dhont e=demofs
the collection you were using when you had problems: demo

Time you opened the usabilty report window: Sat May 24 2003 18:25:17 GMT+1200 (New Zeelnd Standard Tice)

Time you sent the usabily report: Sat May 24 2003 13:25:18 GMT+1200 (New Zeelnd Standard Tice)

Time the report was received by the server: Sat May 2418:12.23 2003

Your browser as it dentifies itsel: Wii2 Netseap, 5. (Windows, en-US), Mozill, undefied

Your browser as the server identifies it: Mozill5 0 (Windavs; U Windoves NT 5.1 en-US; 11 3) GeckoR20030312 =
Your browser's IP number: 130217244208

The server's IP number: 13021724892

‘Your language as recorded by your browser: enUS

The resolution of your screen: 1026763

The colour of your screen: defived

The number of bits per pixel your display uses to represent colour:)

You provided us with the following extra information about the problem

How bad the problem was

What Kind of problem it was:

Ot details:

The following data was automatically collected from the form on the Greenstone interface

Type of input Name of input Value of input

select oeh stx

et 4

hidden . 1

select one-t 1 A

Er I [—

Figure 7: The report details window.
Readresults.cgi divides the information in the report up into three groups:

1. Information automatically collected about the system, this includes the JavaScript and CGI environment variables and the like.

2. Information the user has provided—this is designed specifically for use with the test interface, so the “More details” box and the like.
3. Information collected from the generating page.
This is division is done by checking for hard-coded names from the usability report. Anything that doesn’t have one of those names is assumed to be from the generating page, and is divided up at the first ‘-‘ (the thing that divides the type of element from its name in the naming convention described in section 4). These entries are displayed in a table with their type (of the original form element), name, and value.

Words that are more than 80 characters long (for example some Greenstone URLs) are broken up with spaces to enforce word wrap, as HTML will not break a word for wrapping purposes. There is one special element that may be in the usability.txt file that is ignored by readresults.cgi—anything called “update”. This is because this element may be used by trackreport.cgi.
5.3 Trackreport.cgi

This program is a structure in which a report tracking functionality, similar to that of bugzilla
. However, apart from leaving a place in the infrastructure of the feedback system (in the form of the “update” entry which is not generated by perl.cgi and is ignored by readresults.cgi) this program is very much a placeholder. It checks the usability report to see if any comments have been added to the “updates” entry, and if not displays a message to that effect. The window it produced is shown in Figure 8.
[image: image11.png]& Greenstone Usability - Track Report - Mozilla

Greenstone Usability - Track Report

Idd

Aot Prvacy

Your automatically generated report ID number is: 3715345995161053756743
Thank you ey e fo belping us e the usdlty of the Crsenstone softare

Weosived you eport a St Mayr 24 18:12:23 2003, any upcitesas show blow.

To track this report continue to use the URL hitp:fizdld cs waikato.ac nzlecibin/danatrackueport czi?371 53450051 61053156743,

Updates on this report

Hone at this tine

Contact us with any queries or ifyou would like this report o be remaved rom the database. Please include your report ID number (3715345995161083768743) ifyour query cancerns
his report specifically.

i b 2 B8 &3

Figure 8: The report tracking interface

6. Future work

There are two kinds of further work on this project: improving the existing system, and developing additional functionality. The next two sections contain some ideas about possible directions for each of these, from small projects that would take less than a day, to large-scale projects.

6.1 Improvements

· Buttons (small) — The forms at the moment all use the HTML button element. This element does not work in Netscape 4.77 and below, so code to detect the browser and use an input instead would allow users on those systems to submit reports.
· Report details CGI (trivial) — Add a link to the report details for the report being tracked in the track report window.

· Report details JavaScript (medium) — Add some means of viewing the report details before the usability report has been submitted. Things to consider include whether any server-side information will be included and how to ensure the user is fully informed about what will eventually end up in the report.

· Language (medium-large) — The CGI programs do not use the macro system, and so do not translate the interface. Develop some means of interface translation (possibly using the existing macros).
· Branding (medium) — Try some different language on the buttons, in the interface, etc. to see if users are more receptive.
6.2 Extensions

· Niupepa (medium) — Te Taka Keegan would like a modified version of this to run on the Niupepa collection, to allow people to correct errors in the text.
· Greenstone central (large) — Implement and addition to this software that will send the usability reports back to the NZDL site from other Greenstone installations. This would allow an insight into the cultures of other users, and a larger user base.
· Greenstone 3 (very large) — Reimplement the software in the new Greenstone 3 environment. This will require Java. The CGI programs may still be viable.
· Usage logs (large) — Implement some means of combining the usability report with the Greenstone usage logs so that it is possible to see what users were doing before they ran into problems.
· Report tracking (medium large) — Implement some decent report tracking mechanism that can be used by developers to let users know what has been done about their problem.
Further Reading

Nichols, D.M. (2003): "I'd like to complain about this software... " SIGCHI Bulletin, Feb. Available at: http://www.cs.waikato.ac.nz/~daven/docs/nichols-sigchi-03.pdf.
Nichols, D.M., and Twidale, M.B. (2003): "The Usability of Open Source Software", First Monday, 8(1), January. Available at: http://firstmonday.org/issues/issue8_1/nichols/ or in PDF http://www.cs.waikato.ac.nz/~daven/docs/oss-fm.pdf.

Nichols, D.M., McKay, D. and Twidale, M.B. (2003): "Participatory Usability: supporting proactive users", Proceedings of SIGCHI-NZ Symposium on Human Computer Interaction, Dunedin, New Zealand July 3-4.
Receptionist

Web browser interface with “send feedback” button

configures and creates

�

Form for getting feedback (information sent on command)

invokes

“About” and “Privacy” pages

Usability report log file

links to

Macro files, including:

Interface code (html)

JavaScript for invoking feedback form.

Collection configuration file (with usability format statement)

format Usability <interface>

provides configuration information to

provide configuration information and interface code to

perl.cgi

invokes

�

As yet unimplemented “view details” function

links to

Response window

creates

creates

readresults.cgi

trackreport.cgi

links to

links to

Report details page

Report tracking page

reads

creates

creates

links to

links to

� http://bugzilla.mozilla.org/

[image: image1][image: image12.png]Humanity Development Library - Mozilla
T Bl Edt Wew Go Bookmrks Toos Window Heh

92 A g b

ek Rooad
G3rioe | \Bookmars £2HCt £2The Hodla Orgaricaon £Znara 4 unirery £ ks 4 HCl Commriyof P

v x o]
HOME HELP PREFERENCES SEND FEEDBACK
> Whats Related
> search about
for sustainable development and basic human needs
~ Bookmarks . : -
- . search subjects titles a-z organisations how to
Add... Manage Searc
Search for | chapters (] which contain | some_[w] of the words
Search
ame
(4 Personal Toobar Foder
ero About this collection
055 Usabity
b The Huuanity Development Library i a lrge collction of practcel inforation e at belping edue poverty,
= icron's ‘ncreasing huan potential,an providinga practical and usefulechation for all. This version, 2.0, contais 1,230
" Crohis and Clts Founda ‘prblcaions--books, rport, e magazies.-in varions ares of hunan dvelopent, fom agrulturl practie to

ecomomic polices, from water and sanittion tosociety and culture, from education o mamufacturing, from disaster
mitigation to micro-enterprises. It conteins a total of 160,000 peges and 30,000 images, which i printed wonld weigh
340 kg and cost US$20,000. It s avallble om CD-ROM et US$2 for distribution in developing countrcs

2 sverybody’sSuleinsoand
2 Research

4 The Canadian Crohris Hes.

2 vietRing: i The cbjective of the Huanity Libaris Projet i t provie all volved indevelopment, wellbeing and basi needs
2 Find Crobes Discase and withaccess to compete Horary of around 3000 rltiisciplnary books containing practical Knovhary e ideas
2150 Suckst™ - elcome We it many more developroent oganizations to shate thei usefulpublatios, o help distribute these Woraris,

2 ot Zove St fo ane to participate in this humanitaran projeet

“Theetor o thi olletin ae Huunan 16 NGO, HrunanityCD Lt, and Paticpating Orgnizatins. Contet s at
(il roject Huasites ibraiss Prsect, Oosterveklsan 196, B2610 Antrerp, Begiun, Tel 32.3-448.05.54, Fax

e — 323.449.75.74, el It o,

sty Dsoder Tes - e

How to find information in the Humanity Development Library collection
There are 5 ways to find information in this collecton:

© search for partiolar words
© ascess prblizations by sibject
> Hatory © ascess publizations by tik v

i 2 B | E—

[image: image13.png]=

Greenstone Usability - Mozilla =

Greenstone Usability

About- Privacy

Sending this eportis a way of ndicating you have found the web page you were
viswing difieult o frustrating Yo do not have to fill aut he formn - any
information vl help.

Optionally:

More details:

What dind of problem s it? v
How bad is the problem? v
“The report vill contain only information sbout the Creenstons web page you were

viswing, and the technolagy you were usizg to view it (plus any optional
information you provide) Would you still e to send this report?

View reportdefails

